21. Sampling API¶
This page documents the sampling API. For workflows, see Sampling how-to.
21.1 What it is for¶
The sampling brick builds deterministic labeled/unlabeled splits and stores them on disk. [1][2]
21.2 Examples¶
Create a sampling plan and sample a dataset:
from modssc.data_loader import load_dataset
from modssc.sampling import HoldoutSplitSpec, LabelingSpec, SamplingPlan, sample
ds = load_dataset("toy", download=True)
plan = SamplingPlan(split=HoldoutSplitSpec(test_fraction=0.0, val_fraction=0.2), labeling=LabelingSpec())
res, _ = sample(ds, plan=plan, seed=0, dataset_fingerprint=str(ds.meta["dataset_fingerprint"]))
print(res.stats)
Save and load a split:
from modssc.sampling import load_split, save_split
out_dir = save_split(res, out_dir="splits/toy", overwrite=True)
loaded = load_split(out_dir)
print(loaded.split_fingerprint)
Plan and storage helpers are defined in src/modssc/sampling/plan.py and src/modssc/sampling/storage.py. [3][2]
21.3 API reference¶
Sampling and splitting for semi-supervised experiments.
This module takes a canonical dataset from modssc.data_loader and produces
reproducible experimental splits (holdout, k-fold) plus labeled/unlabeled
partitions.
It does NOT download datasets. Use modssc.data_loader for that.
21.4
ImbalanceSpec
dataclass
¶
Optional class imbalance scenario.
Kinds: - none - subsample_max_per_class: cap each class to max_per_class (applies to train or labeled) - long_tail: exponential decay per class rank (applies to train or labeled)
apply_to: - train: modify train_idx before labeling - labeled: modify labeled subset after labeling (removed labeled become unlabeled)
Source code in src/modssc/sampling/plan.py
169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 | |
21.5
LabelingSpec
dataclass
¶
How to select labeled samples within the train partition.
Modes: - fraction: value in (0, 1], selects that fraction of train samples - count: value is an integer count of labeled samples - per_class: value is an integer count per class
If fixed_indices is provided, it is used directly (validated) and the mode is ignored.
Source code in src/modssc/sampling/plan.py
108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 | |
21.6
SamplingError
¶
Bases: RuntimeError
Base error for sampling.
Source code in src/modssc/sampling/errors.py
4 5 | |
21.7
SamplingPlan
dataclass
¶
Full sampling plan.
Source code in src/modssc/sampling/plan.py
220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 | |
21.8
SamplingPolicy
dataclass
¶
Policy for handling official provider splits.
- respect_official_test: if dataset.test exists, keep it as the test set
- use_official_graph_masks: if graph dataset provides masks, use them as train/val/test masks
Source code in src/modssc/sampling/plan.py
8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 | |
21.9
SamplingResult
dataclass
¶
Sampling result with indices (inductive) or masks (graph transductive).
Indices keys (typical): - train, val, test - train_labeled, train_unlabeled
Refs indicate the base split each index array refers to: - "train" means indices are relative to dataset.train - "test" means indices are relative to dataset.test - "nodes" means graph nodes
Masks keys (graph): - train, val, test, labeled, unlabeled
Source code in src/modssc/sampling/result.py
12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 | |
21.10
SamplingValidationError
¶
Bases: 21.6 SamplingError
Raised when a sampled split violates invariants.
Source code in src/modssc/sampling/errors.py
16 17 | |
21.11
sample(dataset, *, plan, seed, dataset_fingerprint=None, dataset_id=None, cache_root=None, save=False, overwrite=False)
¶
Sample a canonical dataset into a reproducible experimental split.
Returns (result, path). Path is not None if save=True.
Source code in src/modssc/sampling/api.py
60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 | |