22. Skip to content

22. Preprocess API

This page documents the preprocess API. For workflows, see Preprocess how-to.

22.1 What it is for

The preprocess brick runs deterministic, cacheable transformation pipelines to produce feature matrices. [1][2]

22.2 Examples

Build and run a plan:

from modssc.data_loader import load_dataset
from modssc.preprocess import PreprocessPlan, StepConfig, preprocess

ds = load_dataset("toy", download=True)
plan = PreprocessPlan(steps=(StepConfig(step_id="core.ensure_2d"), StepConfig(step_id="core.to_numpy")))
res = preprocess(ds, plan, seed=0, fit_indices=list(range(len(ds.train.y))))
print(res.preprocess_fingerprint)

Inspect available steps:

from modssc.preprocess import available_steps, step_info

print(available_steps())
print(step_info("core.ensure_2d"))

The step catalog is defined in src/modssc/preprocess/catalog.py. [3]

22.3 API reference

Preprocessing and representation utilities for ModSSC.

This module provides a deterministic, cacheable, and extensible preprocessing pipeline that consumes datasets from :mod:modssc.data_loader and (optionally) split information from :mod:modssc.sampling.

Design goals: - minimal imports (optional dependencies are loaded lazily) - reproducibility via plan + dataset fingerprint + fit scope fingerprint - step registry for easy contribution

22.4 PreprocessPlan dataclass

A preprocessing plan.

A plan is independent from a dataset. Conditional logic is applied during resolution.

Source code in src/modssc/preprocess/plan.py
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
@dataclass(frozen=True)
class PreprocessPlan:
    """A preprocessing plan.

    A plan is independent from a dataset. Conditional logic is applied during resolution.
    """

    steps: tuple[StepConfig, ...]
    output_key: str = "features.X"

    def to_dict(self) -> dict[str, Any]:
        return {
            "output_key": self.output_key,
            "steps": [
                {
                    "id": s.step_id,
                    "params": dict(s.params),
                    "modalities": list(s.modalities),
                    "requires_fields": list(s.requires_fields),
                    "enabled": bool(s.enabled),
                }
                for s in self.steps
            ],
        }

    def fingerprint(self) -> str:
        return fingerprint(self.to_dict(), prefix="plan:")

22.5 StepConfig dataclass

A single step configuration in a preprocessing plan.

Source code in src/modssc/preprocess/plan.py
13
14
15
16
17
18
19
20
21
@dataclass(frozen=True)
class StepConfig:
    """A single step configuration in a preprocessing plan."""

    step_id: str
    params: Mapping[str, Any] = field(default_factory=dict)
    modalities: tuple[str, ...] = ()
    requires_fields: tuple[str, ...] = ()
    enabled: bool = True

22.6 fit_transform(*args, **kwargs)

Alias for preprocess().

Source code in src/modssc/preprocess/api.py
746
747
748
def fit_transform(*args: Any, **kwargs: Any) -> PreprocessResult:
    """Alias for preprocess()."""
    return preprocess(*args, **kwargs)

22.7 preprocess(dataset, plan, *, seed=0, fit_indices=None, cache=True, cache_dir=None, purge_unused_artifacts=False, registry=None)

Run preprocessing.

Parameters - dataset: LoadedDataset from modssc.data_loader - plan: PreprocessPlan - seed: master seed for deterministic steps - fit_indices: optional indices (relative to train split) used by fittable steps - cache: enable step-level cache - cache_dir: optional override of preprocessing cache directory - purge_unused_artifacts: drop artifacts not needed by downstream steps

Source code in src/modssc/preprocess/api.py
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
def preprocess(
    dataset: LoadedDataset,
    plan: PreprocessPlan,
    *,
    seed: int = 0,
    fit_indices: np.ndarray | None = None,
    cache: bool = True,
    cache_dir: str | None = None,
    purge_unused_artifacts: bool = False,
    registry: StepRegistry | None = None,
) -> PreprocessResult:
    """Run preprocessing.

    Parameters
    - dataset: LoadedDataset from modssc.data_loader
    - plan: PreprocessPlan
    - seed: master seed for deterministic steps
    - fit_indices: optional indices (relative to train split) used by fittable steps
    - cache: enable step-level cache
    - cache_dir: optional override of preprocessing cache directory
    - purge_unused_artifacts: drop artifacts not needed by downstream steps
    """
    start = perf_counter()
    reg = registry or default_step_registry()
    resolved = resolve_plan(dataset, plan, registry=reg)
    dataset_fp = _dataset_fingerprint(dataset)

    fit_fp = "fit:none"
    if fit_indices is not None:
        fit_arr = np.asarray(fit_indices, dtype=np.int64).reshape(-1)
        fit_hash = hashlib.sha256(fit_arr.tobytes()).hexdigest()
        fit_fp = f"fit:{fit_hash}"

    preprocess_fp = fingerprint(
        {
            "dataset_fp": dataset_fp,
            "resolved_plan_fp": resolved.fingerprint,
            "fit_fp": fit_fp,
            "seed": int(seed),
        },
        prefix="preprocess:",
    )

    cm = None
    if cache:
        cm = CacheManager.for_dataset(dataset_fp)
        if cache_dir is not None:
            cm.root = Path(cache_dir).expanduser().resolve()

    train_store = _initial_store(dataset.train)
    test_store = _initial_store(dataset.test) if dataset.test is not None else None
    purge_keep_sets = None
    if purge_unused_artifacts:
        purge_keep_sets = _build_purge_keep_sets(
            resolved.steps, output_key=plan.output_key, initial_keys=set(train_store)
        )
        logger.info(
            "Preprocess purge enabled: retaining minimal artifacts per step (steps=%s)",
            len(purge_keep_sets),
        )
        if purge_keep_sets and logger.isEnabledFor(logging.DEBUG):
            logger.debug("Preprocess purge keep keys (step 0): %s", sorted(purge_keep_sets[0]))

    logger.info(
        "Preprocess start: dataset_fp=%s steps=%s output_key=%s seed=%s cache=%s",
        dataset_fp,
        [s.step_id for s in resolved.steps],
        plan.output_key,
        seed,
        bool(cache),
    )
    logger.debug(
        "Preprocess input shapes: train_X=%s train_y=%s test_X=%s test_y=%s",
        _shape_of(dataset.train.X),
        _shape_of(dataset.train.y),
        _shape_of(dataset.test.X) if dataset.test is not None else None,
        _shape_of(dataset.test.y) if dataset.test is not None else None,
    )
    logger.info(
        "Preprocess input size: train_data=%s test_data=%s",
        _format_split_size(train_store, output_key=plan.output_key),
        _format_split_size(test_store, output_key=plan.output_key),
    )

    prov_train = {k: f"{dataset_fp}:{k}" for k in train_store}
    prov_test = {k: f"{dataset_fp}:{k}" for k in (test_store if test_store else [])}

    gpu_logged = False
    for _step_num, step in enumerate(resolved.steps):
        step_id = step.step_id
        spec = step.spec
        derived = derive_seed(seed, step_id=step_id, step_index=step.index)
        rng = np.random.default_rng(derived)
        step_start = perf_counter()
        logger.debug(
            "Preprocess step start: id=%s index=%s kind=%s params=%s",
            step_id,
            step.index,
            spec.kind,
            dict(step.params),
        )

        # Compute step fingerprint with input provenance.
        inputs_train = {k: prov_train.get(k) for k in spec.consumes if k in prov_train}
        inputs_test = (
            {k: prov_test.get(k) for k in spec.consumes if k in prov_test} if test_store else {}
        )
        step_fp = fingerprint(
            {
                "dataset_fp": dataset_fp,
                "step_id": step_id,
                "index": step.index,
                "params": dict(step.params),
                "kind": spec.kind,
                "seed": int(derived),
                "fit_fp": fit_fp if spec.kind == "fittable" else None,
                "inputs_train": inputs_train,
                "inputs_test": inputs_test,
            },
            prefix="step:",
        )

        step_obj = reg.instantiate(step_id, params=dict(step.params))

        # Fit if needed.
        if spec.kind == "fittable":
            if fit_indices is None:
                raise PreprocessValidationError(
                    f"Step {step_id!r} is fittable but fit_indices is None."
                )
            if not hasattr(step_obj, "fit"):
                raise PreprocessValidationError(
                    f"Step {step_id!r} declared fittable but has no fit()."
                )
            step_obj.fit(train_store, fit_indices=np.asarray(fit_indices, dtype=np.int64), rng=rng)

        # Load from cache if available, otherwise compute and save.
        produced_train: dict[str, Any] | None = None
        train_from_cache = False
        if cm is not None and cm.has_step_outputs(step_fp, split="train"):
            try:
                produced_train = cm.load_step_outputs(step_fingerprint=step_fp, split="train")
                if not _cache_outputs_complete(produced_train, spec.produces):
                    raise PreprocessCacheError(
                        f"Incomplete cached outputs for step {step_id!r} (train)"
                    )
                train_from_cache = True
            except PreprocessCacheError as e:
                logger.warning("Preprocess cache miss for %s (train): %s", step_id, e)
                produced_train = None
        if produced_train is None:
            produced_train = step_obj.transform(train_store, rng=rng)
            if not isinstance(produced_train, dict):
                raise PreprocessValidationError(
                    f"Step {step_id!r} must return a dict of produced artifacts."
                )
            if cm is not None:
                cm.save_step_outputs(
                    step_fingerprint=step_fp,
                    split="train",
                    produced=produced_train,
                    manifest={
                        "step_id": step_id,
                        "index": step.index,
                        "params": dict(step.params),
                        "kind": spec.kind,
                        "required_extra": spec.required_extra,
                        "consumes": list(spec.consumes),
                        "produces": list(spec.produces),
                        "inputs_train": inputs_train,
                        "fit_fp": fit_fp if spec.kind == "fittable" else None,
                        "seed": int(derived),
                    },
                )

        for k, v in produced_train.items():
            train_store.set(k, v)
            prov_train[k] = step_fp
        logger.debug(
            "Preprocess step train outputs: id=%s keys=%s duration_s=%.3f",
            step_id,
            sorted(produced_train.keys()),
            perf_counter() - step_start,
        )

        produced_test: dict[str, Any] | None = None
        test_from_cache = False
        if test_store is not None:
            if cm is not None and cm.has_step_outputs(step_fp, split="test"):
                try:
                    produced_test = cm.load_step_outputs(step_fingerprint=step_fp, split="test")
                    if not _cache_outputs_complete(produced_test, spec.produces):
                        raise PreprocessCacheError(
                            f"Incomplete cached outputs for step {step_id!r} (test)"
                        )
                    test_from_cache = True
                except PreprocessCacheError as e:
                    logger.warning("Preprocess cache miss for %s (test): %s", step_id, e)
                    produced_test = None
            if produced_test is None:
                produced_test = step_obj.transform(test_store, rng=rng)
                if not isinstance(produced_test, dict):
                    raise PreprocessValidationError(
                        f"Step {step_id!r} must return a dict of produced artifacts."
                    )
                if cm is not None:
                    cm.save_step_outputs(
                        step_fingerprint=step_fp,
                        split="test",
                        produced=produced_test,
                        manifest={
                            "step_id": step_id,
                            "index": step.index,
                            "params": dict(step.params),
                            "kind": spec.kind,
                            "required_extra": spec.required_extra,
                            "consumes": list(spec.consumes),
                            "produces": list(spec.produces),
                            "inputs_test": inputs_test,
                            "fit_fp": fit_fp if spec.kind == "fittable" else None,
                            "seed": int(derived),
                        },
                    )

            for k, v in produced_test.items():
                test_store.set(k, v)
                prov_test[k] = step_fp
            logger.debug(
                "Preprocess step test outputs: id=%s keys=%s",
                step_id,
                sorted(produced_test.keys()),
            )

        if purge_keep_sets is not None:
            keep = purge_keep_sets[_step_num]
            _purge_store(train_store, keep=keep)
            if test_store is not None:
                _purge_store(test_store, keep=keep)

        if not gpu_logged:
            computed = not train_from_cache
            if test_store is not None:
                computed = computed or not test_from_cache
            gpu_logged = _maybe_log_gpu_info(
                step.params,
                step_obj,
                produced_train=produced_train,
                produced_test=produced_test,
                use_device_hint=computed,
            )

        step_duration = perf_counter() - step_start
        logger.info(
            "Preprocess step done: id=%s index=%s duration_s=%.3f train_data=%s test_data=%s",
            step_id,
            step.index,
            step_duration,
            _format_split_size(train_store, output_key=plan.output_key),
            _format_split_size(test_store, output_key=plan.output_key),
        )

    # Choose final X for downstream training.
    out_key = plan.output_key
    X_train = train_store.get(out_key, train_store.require("raw.X"))
    y_train = train_store.get("labels.y", train_store.require("raw.y"))

    edges_train = train_store.get("graph.edge_index", dataset.train.edges)
    if train_store.has("graph.edge_weight"):
        edges_train = {
            "edge_index": train_store.get("graph.edge_index"),
            "edge_weight": train_store.get("graph.edge_weight"),
        }

    train_out = Split(X=X_train, y=y_train, edges=edges_train, masks=dataset.train.masks)

    test_out = None
    if dataset.test is not None and test_store is not None:
        X_test = test_store.get(out_key, test_store.require("raw.X"))
        y_test = test_store.get("labels.y", test_store.require("raw.y"))
        edges_test = test_store.get("graph.edge_index", dataset.test.edges)
        if test_store.has("graph.edge_weight"):
            edges_test = {
                "edge_index": test_store.get("graph.edge_index"),
                "edge_weight": test_store.get("graph.edge_weight"),
            }
        test_out = Split(X=X_test, y=y_test, edges=edges_test, masks=dataset.test.masks)

    meta = dict(dataset.meta)
    meta.update(
        {
            "preprocess_fingerprint": preprocess_fp,
            "preprocess_plan_fingerprint": resolved.fingerprint,
            "preprocess_fit_fingerprint": fit_fp,
        }
    )
    if cm is not None:
        meta["preprocess_cache_dir"] = str(cm.dataset_dir())

    out_dataset = LoadedDataset(train=train_out, test=test_out, meta=meta)
    _maybe_warn_nonfinite("train.X", train_out.X)
    if test_out is not None:
        _maybe_warn_nonfinite("test.X", test_out.X)

    logger.info(
        "Preprocess done: dataset_fp=%s duration_s=%.3f train_X=%s test_X=%s",
        dataset_fp,
        perf_counter() - start,
        _shape_of(train_out.X),
        _shape_of(test_out.X) if test_out is not None else None,
    )
    return PreprocessResult(
        dataset=out_dataset,
        plan=resolved,
        preprocess_fingerprint=preprocess_fp,
        train_artifacts=train_store,
        test_artifacts=test_store,
        cache_dir=str(cm.dataset_dir()) if cm is not None else None,
    )
Sources
  1. src/modssc/preprocess/api.py
  2. src/modssc/preprocess/plan.py
  3. src/modssc/preprocess/catalog.py